首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3305篇
  免费   68篇
  国内免费   33篇
安全科学   114篇
废物处理   102篇
环保管理   609篇
综合类   522篇
基础理论   868篇
环境理论   9篇
污染及防治   794篇
评价与监测   192篇
社会与环境   149篇
灾害及防治   47篇
  2023年   13篇
  2022年   15篇
  2021年   39篇
  2020年   20篇
  2019年   32篇
  2018年   80篇
  2017年   76篇
  2016年   84篇
  2015年   86篇
  2014年   95篇
  2013年   243篇
  2012年   156篇
  2011年   203篇
  2010年   149篇
  2009年   163篇
  2008年   174篇
  2007年   205篇
  2006年   205篇
  2005年   150篇
  2004年   107篇
  2003年   102篇
  2002年   116篇
  2001年   65篇
  2000年   57篇
  1999年   47篇
  1998年   50篇
  1997年   59篇
  1996年   46篇
  1995年   54篇
  1994年   49篇
  1993年   29篇
  1992年   31篇
  1991年   23篇
  1990年   23篇
  1989年   11篇
  1988年   14篇
  1987年   14篇
  1986年   19篇
  1985年   17篇
  1984年   19篇
  1983年   21篇
  1982年   17篇
  1981年   16篇
  1980年   18篇
  1979年   20篇
  1978年   13篇
  1977年   10篇
  1965年   11篇
  1963年   8篇
  1957年   10篇
排序方式: 共有3406条查询结果,搜索用时 218 毫秒
991.
992.
993.
The aquatic sediments have special significance as habitats of species-rich biocoenoses and as the place where manifold transformation processes occur. Because of their high potential for accumulation of contaminants, sediments are particularly sensitive to anthropogenic impacts, which may disturb the natural state of sediments. In order to protect the aquatic life community, such impacts must be identified, assessed, and the chemical causes of toxic effects must be found. Since the end of the 1980s, the interest for a possibly comprehensive assessment of sediments has increased. This problem can be tackled only by an integrated approach, which combines the detection of toxicity under standardized laboratory conditions with chemical data and biologicalin situ studies into a holistic view. The information value of the results depends essentially on the selection of a diversity of test methods, which are able to indicate contaminant effects differentially. This paper presents results from a comprehensive test approach, which integrates standardized methods (DIN) with pore waters and eluates, as well as tests using the whole sediment. To cover a wider variety of contaminants in the sediment, solvent extracts and fractions thereof were also examined by different bioassays. Chemical analyses examined the structural parameters and identified priority contaminants. Non-target screening could detect a variety of further substances and substance classes. The model organisms of the bioassays responded very differentially and sometimes very intensively to the contaminants in the various investigation media. Especially in sediment extracts, some fractions, and consequently also substances and groups of substances, proved to be particularly toxic. It could be shown that the selected chemical, ecotoxicological, and biological study methods contribute to a holistic assessment. Further, possibly very sensitive bioassays and benthos-biological parameters should be examined aiming to optimize the very wide battery of tests.  相似文献   
994.
995.
In an equilibrium framework, optimal management of renewable resources in the presence of growing demand or externalities leads to steady states that differ from those characterized by rate of interest equals rate of change in growth plus rate of change in prices. Measures to reach an optimum with externalities other than direct controls are found to be critically mediated by the costs of harvesting.  相似文献   
996.

Background, aim, and scope

The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5?µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.

Materials and methods

The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.

Results

The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.

Discussion

The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.

Conclusions

TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves’ of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.

Recommendations and perspectives

Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
  相似文献   
997.
998.
Most states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream. In regions where hydrologically active areas of watersheds vary in time and space, surface runoff generation by "saturation excess" has been linked to distance from stream, with larger events resulting in larger contributing distances. Thus, storm-return period and P loss from a 39.5-ha mixed-land-use watershed in Pennsylvania was evaluated to relate return-period thresholds and distances contributing P to streams. Of 248 storm flows between 1997 and 2006, 93% had a return period of 1 yr, contributing 47% of total P (TP) export, while the largest two storms (10-yr return period) accounted for 23% of TP export. Contributing distance thresholds for the watershed were determined (50-150 m) for a range of storm-return periods (1-10 yr) from hydrograph analysis. By modifying storm-return period thresholds in the P Index and thereby contributing distance, it is possible to account for greater risk of P loss during large storms. For instance, increasing return period threshold from 1 (current P indices) to 5 yr, which accounted for 67% of TP export, increased the P-management restricted area from 20 to 58% of the watershed. An increase in impacted area relative to a decreased risk of P loss creates a management-policy dilemma that cannot be ignored.  相似文献   
999.
Prediction of the movement of water and solutes in the vadose zone requires information on the distribution of spatial trends and heterogeneities in porous media. The present study describes different lithofacies origination mainly from glaciofluvial deposits. Among different lithofacies, hydrological relationships were investigated. By means of a two-dimensional hydrological model it was evaluated how the flow of water and leaching of metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one) was affected. Two selected large outcrop sections consisting of glacial outwash deposits were used in the modeling study. Eleven different lithofacies were distinguished and described in terms of texture distribution, sorting, bedding style, and external boundaries based on excavated soil profiles from 27 locations representing seven predominantly sandy landforms in Denmark. Undisturbed soil columns were sampled from each of the lithofacies and brought to the laboratory to be analyzed. With respect to their soil hydraulic properties, the different lithofacies formed four different hydrofacies having relatively homogeneous, hydrogeological properties. Two large outcrop sections from one of the locations (a gravel pit) located near the terminal moraine of the former Weichsel glacier were used for the HYDRUS-2D modeling. Modeling results revealed that the spatial distribution of sedimentary bodies affected water flow and the leaching of metribuzin.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号